
OR I G I N A L R E S E A R CH

Transcriptomic analysis of sweet potato under dehydration
stress identifies candidate genes for drought tolerance

Kin H. Lau1 | María del Rosario Herrera2 | Emily Crisovan1 | Shan Wu3 |

Zhangjun Fei3 | Muhammad Awais Khan2 | Carol Robin Buell1,4 | Dorcus C. Gemenet2

1Department of Plant Biology, Michigan

State University, East Lansing, Michigan

2International Potato Center, Lima, Peru

3Boyce Thompson Institute, Cornell

University, Ithaca, New York

4Plant Resilience Institute, Michigan State

University, East Lansing, Michigan

Correspondence

C. Robin Buell and Kin H. Lau, Department

of Plant Biology, Michigan State University,

East Lansing, MI.

Emails: buell@msu.edu and laukin3@msu.edu

Present address

Muhammad Awais Khan, Plant Pathology

and Plant-Microbe Biology Section, Cornell

University, Geneva, New York.

Funding information

Bill & Melinda Gates Foundation, Grant/

Award Number: OPP1052983

Abstract

Sweet potato (Ipomoea batatas [L.] Lam.) is an important subsistence crop in Sub‐
Saharan Africa, yet as for many crops, yield can be severely impacted by drought

stress. Understanding the genetic mechanisms that control drought tolerance can

facilitate the development of drought‐tolerant sweet potato cultivars. Here, we

report an expression profiling study using the US‐bred cultivar, Beauregard, and a

Ugandan landrace, Tanzania, treated with polyethylene glycol (PEG) to simulate

drought and sampled at 24 and 48 hr after stress. At each time‐point, between

4,000 to 6,000 genes in leaf tissue were differentially expressed in each cultivar.

Approximately half of these differentially expressed genes were common between

the two cultivars and were enriched for Gene Ontology terms associated with

drought response. Three hundred orthologs of drought tolerance genes reported in

model species were identified in the Ipomoea trifida reference genome, of which

122 were differentially expressed under at least one experimental condition, consti-

tuting a list of drought tolerance candidate genes. A subset of genes was differen-

tially regulated between Beauregard and Tanzania, representing genotype‐specific
responses to drought stress. The data analyzed and reported here provide a

resource for geneticists and breeders toward identifying and utilizing drought toler-

ance genes in sweet potato.
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1 | INTRODUCTION

Sweet potato (Ipomoea batatas [L.] Lam.) is grown worldwide for its

nutrient‐rich storage roots. In Sub‐Saharan African (SSA), sweet

potato is a subsistence crop for small holder farmers and is a major

source of energy and nutrition; as a consequence, it is an important

food security crop (Low, Mwanga, Andrade, Carey, & Ball, 2017;

Low et al., 2009; Mwanga & Ssemakula, 2011). Drought is a major

concern for agriculture in many regions and is a particularly

important issue among poor smallholder farmers who often lack the

capacity to irrigate their crops, including sweet potato (Low et al.,

2009). Screens for drought tolerance among sweet potato clones

that grow well in SSA environments such as Mozambique (Maquia et

al., 2013) and Kenya (Kivuva, Githiri, Yencho, & Sibiya, 2015) have

shown that drought tolerance varies greatly in sweet potato germ-

plasm, with the relative performance of sweet potato varieties in

terms of yield shifting substantially between drought and non‐
drought conditions. The presence of genetic variation for drought
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tolerance among sweet potato germplasm suggests that drought tol-

erance loci can be introgressed into drought‐sensitive cultivars. Thus,

understanding the genetic and molecular basis of drought tolerance

will aid in breeding for high‐performing, drought tolerant sweet

potato cultivars.

Drought stress induces a set of physiological responses with

stomatal closure to reduce water loss through transpiration being

the most immediate and important (reviewed in Osakabe, Osakabe,

Shinozaki, & Tran, 2014). At the onset of drought, abscisic acid

(ABA) levels are elevated, initiating signaling pathways that modulate

guard cell osmolarity to achieve stomatal closure. As a result, compo-

nents of the ABA signaling pathway as well as guard cell ion pumps

are essential for proper stomatal closure during drought, leading to

drought tolerance. However, control of stomatal closure during

drought involves compromising between limiting water loss and

maintaining CO2 uptake for photosynthesis, which ultimately impacts

crop yield. Thus, understanding the intricate processes that modulate

drought responses such as stomatal closure and resiliency of photo-

synthetic rates during drought are crucial aspects of optimizing

drought tolerance in crop plants.

Beauregard is a US‐bred variety with low dry matter and orange

flesh due to high levels of carotenoids (Rolston et al., 1987), while

Tanzania is a popular Ugandan landrace with high dry matter and

cream flesh (Mwanga et al., 2001). Though a Tanzania × Beauregard

population (Cervantes‐Flores, Yencho, Kriegner, et al., 2008) has

been used to map quantitative trait loci (QTL) for root‐knot nema-

tode resistance, dry matter, starch, and β‐carotene content (Cervan-

tes‐Flores, Yencho, Pecota, Sosinski, & Mwanga, 2008; Cervantes‐
Flores et al., 2011), drought tolerance traits have not yet been inves-

tigated in this population. However, we have an ongoing project to

map QTL for drought‐related traits using a population derived from

the reciprocal cross, Beauregard × Tanzania. Promisingly, Kivuva et

al. (2015) in a study involving 84 total genotypes showed that Beau-

regard differs from Tanzania in several drought response traits.

Greenhouse‐grown plantlets derived from cuttings of Tanzania stay

green longer under drought conditions than those from Beauregard

by 6–7 days, suggesting greater drought tolerance in Tanzania (Sup-

porting Information Figure S1a). Mature plants grown at two differ-

ent sites in Kenya under irrigated and rain‐fed conditions resulted in

a larger decrease in chlorophyll content in Tanzania compared to

Beauregard, yet the number of storage roots and the fresh storage

root weight were more sensitive in Beauregard than in Tanzania

(Supporting Information Figure S1b–d).
A few studies have examined global transcriptomic responses

for drought‐related traits in different Ipomoea species. Yang et al.

(2018) recently reported a three‐way combined de novo transcrip-

tome for whole plants of PEG‐treated Ipomoea triloba, I. batatas (cv.

Kokei No. 14) and a somatic hybrid between the two species, find-

ing genes that are differentially regulated in the I. batatas parent

compared to either I. triloba or the hybrid, which are more drought

tolerant. Other de novo transcriptome approaches have been

reported for hexaploid Ipomoea trifida and Ipomoea imperati for

drought and salt stress, respectively (Peng et al., 2017; Solis,

Baisakh, Brandt, Villordon, & Bonte, 2016). In this study, global gene

expression patterns in leaf tissue of two varieties of I. batatas,

Beauregard, and Tanzania, during PEG‐simulated drought stress

were characterized with RNA‐Sequencing (RNA‐Seq); diploid I. tri-

fida, which is closely related to I. batatas and is a putative progeni-

tor species (Austin, 1988; Kobayashi, 1983), was used as the

reference genome sequence (http://sweetpotato.plantbiology.msu.ed

u/gt4sp_download.shtml). Differentially expressed genes (DEGs)

were identified, revealing candidate genes for improving drought tol-

erance in sweet potato. In addition, genes with unique expression

patterns in the two cultivars were classified into co‐expression clus-

ters showing enrichment for biological processes that could con-

tribute to phenotypic differences in their drought responses. Data

from this study will be useful in identifying candidate genes within

drought tolerance QTL and improving drought tolerance in this key

food security crop.

2 | MATERIALS AND METHODS

2.1 | Determination of optimal conditions to induce
dehydration stress

In vitro plants of Beauregard (CIP440132) and Tanzania (CIP440166)

were obtained from the International Potato Center (CIP) Genebank

and nodes were cultured to form plantlets on MPB medium (Mura-

shige and Skoog salts, 3% sucrose, 2 mg/L calcium pantothenate,

100 mg/L L‐arginine, 200 mg/L ascorbic acid, 20 mg/L putrescine‐HCl,

10 mg/L GA3, 0.3% Phytagel, pH 5.7, autoclaved at 121°C for

15 min as recommended by the supplier) in culture tubes (three per

tube). Shoot cultures were kept in a growth room at 27 ± 2°C,

3,000 lx, and 12 hr light/12 hr dark.

Polyethylene glycol (PEG 6000, Sigma) concentrations were cho-

sen to create osmotic pressure levels between field capacity

(−0.033 mpa) and permanent wilting (−1.5 mpa), as estimated based

on osmotic pressure values reported for different PEG 6000 concen-

trations (http://www.plantstress.com/methods/peg.htm; Michel &

Kaufmann, 1973). After 21 days of growth in solid MPB media, the

plants were transferred to 35 ml of 15%, 20%, and 25% PEG6000

liquid MPB media, representing osmotic pressure values of −0.295,

−0.491, and −0.735 mpa, respectively. Three replicates were used.

Cultures were maintained in a growth chamber under the conditions

described above and stress symptoms were evaluated at 4, 24,

48 hr, and 21 days after stress application.

2.2 | Plant growth conditions for RNA‐Seq

For both varieties, one node was cut from the donor plant and

placed in a 16 × 125 mm tube containing solid MPB media. Only

the internode was submerged into the solid media to allow the node

to grow. Fourteen days after planting, six plantlets with similar size

were selected and transferred to another vessel containing liquid

MPB media. A thin plate of acrylic plastic containing small holes was

used to support plantlets and to allow leaf expansion. Three
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biological replicates and three controls were used. Cultures were

maintained in the growth chamber under the same conditions as

described above. At 21 days after planting, the initial liquid media

was removed and replaced with liquid media containing 25% PEG in

liquid MPB medium. Leaf samples were collected for RNA extraction

at 24 and 48 hr after stress (HAS) imposition, flash frozen, and

stored at −80°C. RNA extraction was performed with 200 mg of leaf

tissue for each sample using TRIzol (Invitrogen) according to supplier

instructions.

2.3 | Library construction, sequencing, and
expression estimation

Strand‐specific RNA‐Seq libraries (one library for each of three bio-

logical replicates per experimental condition; Supporting Information

Table S1) were constructed using the protocol described in Zhong et

al. (2011) and sequenced on an Illumina HiSeq 2500 platform. Reads

were trimmed using CutAdapt (v1.8.3; Martin, 2011), removing up to

two adapter sequences from each read, retaining only reads with a

minimum read length of 31 nt and trimming the 3′ end with a quality

cut‐off of 10. Reads were trimmed to 100 nt using FASTX (v0.0.14;

http://hannonlab.cshl.edu/fastx_toolkit/) as a subset of libraries were

sequenced to a read length of 151 nt instead of 101 nt. Reads

flagged by the Illumina pipeline as low quality with “Y” were

removed. Mononucleotide repeats of T and A 10‐mers were

removed up to 10 times using CutAdapt (v1.8.3), retaining only reads

with a minimum read length of 31 nt. Libraries were run on multiple

lanes (technical replicates) and were mapped independently to the

I. trifida genome assembly v3 (http://sweetpotato.plantbiology.

msu.edu/gt4sp_download.shtml) using TopHat2 (v2.1.1; Kim et al.,

2013) implementing Bowtie2 (v2.2.9; Langmead & Salzberg, 2012)

with the options: –min‐intron‐length 10, –max‐intron‐length 5000, –
max‐multihits 20, –library‐type fr‐firststrand, –min‐segment‐intron 10,

–max‐segment‐intron 5000, –b2‐N 1, –read‐mismatches 3, and –
read‐edit‐dist 3.

Cufflinks (v2.2.1; Trapnell et al., 2010) was used to calculate

fragments per kilobase exon model per million mapped reads

(FPKMs) for the set of high‐confidence I. trifida gene models (v3)

using the options: –multi‐read‐correct, –min‐intron‐length 10, –max‐
intron‐length 5000, –library‐type fr‐first strand. One technical repli-

cate was removed because of a markedly lower alignment rate com-

pared to other technical replicates. Transcripts itf01g31740.t1,

itf02g16070.t2, itf03g01940.t1 were removed because these had

identical coordinates as another isoform of the same gene. Correla-

tions between different sequencing runs of the same library were

quantified using Pearson Correlation Coefficients from FPKMs in R

(pairwise.complete.obs, method = pearson). Technical replicates were

highly correlated, with most correlation coefficients above 0.95 and

others above 0.90. The alignment files for technical replicates were

merged using the MergeSamFiles tool in PicardTools (v2.1.1; https://

broadinstitute.github.io/picard/), and used for calculating FPKMs for

each biological replicate (Supporting Information Table S2) and for

differential expression analysis.

2.4 | Identification of differentially expressed genes

Gene annotations (v3; http://sweetpotato.plantbiology.msu.edu/

gt4sp_download.shtml) were converted from GFF3 to GTF format

using the “gffread” script included with Cufflinks (v2.2.2). Uniquely

mapping reads overlapping gene models were counted using htseq‐
count in HTSeq (v0.6.1p1; Anders, Pyl, & Huber, 2015) with the

options: –stranded = reverse –minaqual = 10 –type = exon –mode =

union.

Read counts were used to detect differential expression with

DESeq2 v1.16.1 (Love, Huber, & Anders, 2014). For differential

expression between control and PEG treatment at each time‐point
in each variety, unique combinations of treatment, time‐points,
and variety were treated as a single factor, and the contrasts

function in DESeq2 was used to test whether log2 fold change

was equal to 0 for each pair of control and PEG treatment levels.

An adjusted p‐value cut‐off of 0.05 and a log2 fold‐change thresh-

old of 1.5 were used. The “lfcShrink” function was used to

restrain high log2 fold changes for genes with low expression

levels.

To detect genes that responded differentially to PEG between

Beauregard and Tanzania at either time‐point or both time‐points, the
full model, ~treatment + variety + time_point + variety:time_point +

treatment: time_pt + treatment:variety:time_point, was tested aga-

inst a reduced model of, ~treatment + variety + time_point +

variety:time_point + treatment:time_pt using a likelihood ratio test

implemented in DESeq2 and an adjusted p‐value cut‐off of 0.01. For
K‐means clustering, log2 fold changes calculated by DESeq2 were

obtained for significant genes and mean‐centered by subtracting the

arithmetic mean for each gene. K‐means clustering was conducted

using the “kmeans” function in R with the settings, centers = 16,

nstart = 25, iter.max = 100, algorithm = “MacQueen” (MacQueen,

1967). A K of 16 was chosen because relatively little reduction in

total within‐cluster variation was observed for larger values.

2.5 | Gene ontology term enrichment analysis

Groups of DEGs or clusters with similar expression patterns were

tested for enriched gene ontology (GO) terms using the

“weight01” algorithm and Fisher's exact test implemented in

topGO v2.28.0 (Alexa & Rahnenfuhrer, 2016) using all genes with

GO terms as the background. p‐values were corrected for multiple

testing using the “p.adjust” function in R to implement the FDR

method (Benjamini & Hochberg, 1995), and filtered at the 0.05

level.

2.6 | Orthology analysis

OrthoFinder v1.1.3 (Emms & Kelly, 2014) was run with the longest

peptide isoforms from the predicted proteomes of Amborella tri-

chopoda v1.0, Arabidopsis thaliana TAIR10, I. trifida v3, Oryza sativa

v7, and Solanum lycopersicum iTAG2.4, obtained from Phytozome

v12.1.5 (Goodstein et al., 2012).
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2.7 | Data availability

Raw sequence reads have been deposited in the National Center for

Biotechnology Information Sequence Read Archive under BioProject

PRJNA475293.

3 | RESULTS AND DISCUSSION

3.1 | Establishing effective dehydration conditions

Drought conditions were simulated by adding PEG to the media

that plantlets were grown in. No stress symptoms were observed

up to 6 HAS. However, wilted and chlorotic leaves were observed

in PEG‐treated plantlets of both varieties by 24 HAS, and the

severity increased at 48 HAS (Figure 1a), with plants dying after

21 days. In contrast, leaves on plantlets not treated with PEG

remained green and turgid. No visible differences between the

stress phenotypes of Beauregard and Tanzania were observed at

these plantlet stages. An osmotic pressure of −0.735 mpa (25%

PEG 6000) was chosen for the actual stress experiment for RNA‐
Seq analysis as it elicited strong differences between treated and

untreated plants.

3.2 | Global gene expression profiles are conserved
between Beauregard and Tanzania

To assess the quality of the biological replicates and the extent of

gene expression variation explained by the experimental variables, a

principal component analysis (PCA) was conducted (Figure 1b). Tight

clustering of biological replicates indicated that the majority of the

gene expression variation observed was due to the experimental con-

ditions. Greater than 75% of variation was explained by the first prin-

cipal component, which corresponded predominantly to the addition

of PEG. In comparison, varietal effects of Beauregard and Tanzania,

and the time after PEG application contributed to a much smaller por-

tion of the expression variation. In support of the PCA results, expres-

sion fold changes of mock treatment vs. PEG treatment were

significantly correlated between Beauregard and Tanzania at both 24

and 48 HAS (p < 2.2e‐16 for both; Figure 2a). Indeed, genes with the

largest fold change between mock and PEG treatments were differen-

tially expressed in the same direction and at similar magnitude in

Beauregard and Tanzania (Figure 2a). Conversely, a large number of

genes with less extreme fold changes were differentially expressed in

one variety but not the other, indicating that a substantial portion of

dehydration‐responsive genes are unique to each genotype.
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F IGURE 1 Phenotypic and genetic
response of Beauregard and Tanzania
sweetpotato varieties to the application of
polyethylene glycol (PEG). (a) Plantlets
incubated in untreated media or 25% PEG
media at 24 and 48 hr after stress (HAS).
(b) Principal component analysis of
individual biological replicates using
variance stabilizing transformed read
counts. Each point represents a biological
replicate
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Considering that Beauregard is one of the predominant cultivars

for large, commercial‐scale cultivation in the U.S. while Tanzania is a

landrace commonly grown by smallholder farmers in Uganda and

other East African countries (Carpena, 2009), these two varieties are

likely adapted to different environmental conditions, and shared

genetic responses to PEG may be involved in critical drought toler-

ance or survival mechanisms. At 24 HAS, 2,216 and 1,809 genes

were upregulated while 3,798 and 3,318 genes were downregulated

in Beauregard and Tanzania, respectively. At 48 HAS, numbers of

upregulated genes were comparable to 24 HAS, but downregulated

genes decreased to 3,285 and 2,482. Among genes differentially

expressed in the same direction in both genotypes, similar GO terms

were enriched at 24 and 48 HAS. Consistent with a drought

response, “water deprivation,” “response to ABA,” and “nitrate trans-

port” were among the top biological processes (Figure 2b). Enrich-

ment for the “response to ABA” GO term is expected because

drought utilizes ABA signaling to induce stomatal closure in order to

reduce water loss via transpiration (reviewed in Osakabe et al.,

2014). An important part of this ABA signaling pathway is the trans-

port of ABA to stomatal guard cells by ABA transporter proteins,

such as NITRATE TRANSPORTER 1.2 (NRT1.2; Kanno et al., 2012),

explaining the “nitrate transport” GO term enrichment. Indeed,

upregulated genes enriched for the nitrate transport GO term

included NRT1.2 homologs, NRT1.7 and – at 48 HAS only – NRT1.5,

and an unrelated nitrate transporter, NRT2.7 (Dechorgnat et al.,

2011; Supporting Information Dataset S1). Alternatively, the “nitrate

(b)
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F IGURE 2 Conserved expression responses to polyethylene glycol in Beauregard and Tanzania. (a) Log2 fold change (LFC) of gene
expression abundances in Beauregard and Tanzania at 24 and 48 hr after stress (HAS). “DE B” and “DE T” indicate genes differentially
expressed in only Beauregard or Tanzania, respectively. (b) The most significantly enriched biological process gene ontology terms among
genes differentially expressed in both Beauregard and Tanzania at 24 and 48 HAS
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transport” GO term may be involved in the accumulation of free

amino acids such as proline that are hypothesized to help maintain

cell turgor by decreasing water potential inside cells (Stewart & Lee,

1974). Upregulated genes enriched for the “water deprivation” GO

term (Supporting Information Dataset S1) included well‐known

drought tolerance genes such as DEHYDRATION-RESPONSIVE ELE-

MENT-BINDING PROTEIN 2A (DREB2A) which encodes a drought‐
responsive transcription factor (Liu et al., 1998; Sakuma et al., 2006)

and LATE EMBRYOGENESIS ABUNDANT (LEA), a family of stress‐
inducible genes that encode proteins that have been implicated in

diverse drought tolerance mechanisms such as preventing protein

aggregation and membrane protection during dehydration (Goyal,

Walton, & Tunnacliffe, 2005; Tolleter et al., 2007).

For downregulated genes, the most significant GO terms were

primarily involved in cell division, response to auxin and chlorophyll

biosynthesis (Figure 2b). Stomatal closure leads to reduced flux

through the Calvin cycle, limiting the supply of NADP+ electron

acceptors to the electron transport chain in the chloroplasts causing

an overaccumulation of electrons (Noctor, Mhamdi, & Foyer, 2014;

Osmond & Grace, 1995). Thus, downregulation of genes involved in

chlorophyll biosynthesis may represent an effort to avoid overaccu-

mulation of electrons by reducing photosynthetic capacity. Regard-

less, reduced chlorophyll content due to drought has been reported

in multiple plant species (Jiang & Huang, 2001; Li, Pezeshki, & Good-

win, 2004; Sarker, Rahman, & Paul, 1999) and as a consequence of

decreased photosynthesis, less resources are available to support tis-

sue growth thereby explaining the downregulated GO terms of “cell

proliferation” and the “response to auxin,” an important regulator of

cell and tissue growth. Leaves, the tissue that RNA was extracted

from for this study, are often more susceptible to reduced growth

rate compared to roots and it is hypothesized that reduced leaf area

helps limit water loss due to transpiration (Aguirrezabal et al., 2006;

Pace, Cralle, El‐halawany, Cothren, & Senseman, 1999; Xu et al.,

2015). These overall expression patterns are consistent with a

drought response and indicate that dehydration stress was success-

fully imposed by the PEG treatment.

3.3 | A group of leucine‐rich kinases are
downregulated at 24 HAS

For both directions of regulation, hundreds of DEGs were unique to a

particular time‐point in each variety, indicating that dynamic regula-

tory changes take place between 24 HAS and 48 HAS (Figure 3a,b).

To examine their biological significance, GO term enrichment was

tested for the DEGs that were specific to a particular time‐point and
common to both varieties (Figure 3b). While only weakly significant

GO terms were observed for the other three classes of time‐specific
DEGs, genes downregulated at 24 HAS only were strongly enriched

for protein phosphorylation and plasma membrane GO terms (Fig-

ure 3c). Out of the 39 genes downregulated at only 24 HAS that had

a protein phosphorylation GO term, 24 were annotated as leucine‐rich
repeat protein kinases (LRR‐PK) or leucine‐rich receptor‐like kinases

(LRR‐RLK) and five were other types of kinases (Supporting

Information Dataset S2). The involvement of these genes in PEG

response in sweet potato is consistent with previous transcriptomic

analyses that have shown many LRR‐RLK genes in Arabidopsis to be

responsive (both down and upregulated) to osmotic stress (Chae,

Sudat, Dudoit, Zhu, & Luan, 2009; Lehti‐Shiu, Zou, Hanada, & Shiu,

2009).

3.4 | Identification and analysis of orthologs of
drought tolerance candidate genes

DroughtDB (Alter et al., 2015) is a manually curated database of

~200 drought tolerance candidate genes compiled mainly from

knockout, knockdown, and overexpression experiments in 38 differ-

ent plant systems. Orthogroups were identified for the predicted

proteomes of I. trifida, A. trichopoda (representing the most basal

clade among angiosperms) and three highly represented species in

DroughtDB, A. thaliana, O. sativa, and S. lycopersicum. Eighty‐three
percent of orthogroups containing candidate drought tolerance

genes were conserved by at least four species, consistent with

important biological roles for these genes (Figure 4a). In total, there

were 300 DroughtDB orthologs in I. trifida, and 122 of these were

differentially expressed in at least one variety‐time point combina-

tion (Figure 4b).

3.4.1 | Upregulated candidate genes include a LEA
gene and ABA metabolism genes

We focused on the 21 upregulated (itf12g21010 was downregulated

at 24 HAS in Beauregard) and 16 downregulated drought candidate

genes that were differentially expressed at all four variety‐time point

combinations, reasoning that these genes are strong candidates to

be involved in drought stress responses (Figure 4b; Supporting Infor-

mation Figure S2). A TAS14 homolog (itf03g07310) was upregulated

by >8 log2 fold change across all four variety‐time points combina-

tions, substantially higher than any other drought tolerance candi-

date gene (Figure 4b). TAS14 is a LATE EMBRYOGENESIS

ABUNDANT (LEA) protein of the dehydrin subfamily and its expres-

sion is induced by salt, ABA or mannitol treatment in tomato

(Godoy, Pardo, & Pintor‐Toro, 1990). Overexpression of TAS14 in

tomato under drought stress increases fruit biomass several fold

compared to wild‐type plants while producing no discernable delete-

rious effects under unstressed conditions (Muñoz‐Mayor et al.,

2012). The mechanism of TAS14 action may be related to an

increase in soluble sugars in the leaves that coincides with higher

water potential and cell turgor in drought‐stressed plants over‐
expressing TAS14 (Muñoz‐Mayor et al., 2012). Other candidate

genes upregulated in all four experimental conditions include the

drought‐inducible DREB2A transcription factor (Liu et al., 1998) and

several components of the ABA signaling pathway. These include

the ABA and drought‐inducible bZIP transcription factor ABF3/ABF4/

AREB1/OsbZIP23 that activates genes with ABRE (ABA responsive

element) promoter elements (Kang, Choi, Im, & Kim, 2002; Uno et

al., 2000; Xiang, Tang, Du, Ye, & Xiong, 2008), and the ATP‐binding
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cassette (ABC) ABA transporters, ABCG22, 25 and 40 (Kang et al.,

2010; Kuromori, Sugimoto, & Shinozaki, 2011; Kuromori et al.,

2010). Besides the transport of ABA, its metabolism was also impli-

cated in dehydration response in sweet potato. NCED encodes 9‐cis‐
epoxycarotenoid dioxygenase, an ABA biosynthesis enzyme whose

induction correlates with increases in ABA during drought stress

(Iuchi et al., 2001). Conversely, CYP707A1 and 3 are ABA catabolic

enzymes that are induced by both dehydration and rehydration in

Arabidopsis, allowing controlled ABA responses and rapid disengage-

ment of ABA responses, respectively (Kushiro et al., 2004; Saito et

al., 2004; Umezawa et al., 2006).

3.4.2 | LHCSB6 and SLAC1 are unexpectedly
downregulated during water stress

Surprisingly, some drought tolerance candidate genes that improve

drought tolerance when overexpressed or functional in other species

were downregulated in both varieties at both time‐points. SLOW

ANION CHANNEL-ASSOCIATED 1 (SLAC1; Negi et al., 2008; Vahisalu

et al., 2008) and LIGHT-HARVESTING CHLOROPHYLL A/B-BINDING6

(LHCB6; Jansson, 1999) are two such genes and, intriguingly, these

two genes lack paralogs in I. trifida, suggesting that their down‐regula-
tion during dehydration stress cannot be compensated by the activity

of other genes (Figure 4c). KAT2 was another gene downregulated at

all four variety‐time point combinations that has no paralogs, but the

downregulation of this gene, encoding an inwardly rectifying K+ chan-

nel, is consistent with the need for net K+ efflux from guard cells dur-

ing stomatal closure (Schroeder, Hedrich, & Fernandez, 1984).

In contrast, the downregulation of LHCB6 and SLAC1 may have

detrimental effects on stomatal closure during drought, and restoring

their functions by overexpression may improve drought tolerance in

sweet potato. LHCSB6 encodes a protein associated with photosys-

tem II (Jansson, 1999) that, in Arabidopsis, inhibits ABA‐mediated

stomatal closure when expression is knocked down and enhances

ABA‐mediated stomatal closure when overexpressed (Xu et al.,

2012). Due to its role in mediating stomatal closure, the knockdown

mutant of LHCSB6 has increased drought sensitivity, with visibly

more severe reductions in leaf size and greenness compared to
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wildtype (Xu et al., 2012). SLAC1 is an anion efflux channel protein

that is essential for proper stomatal closure in response to many fac-

tors, including ABA (Negi et al., 2008; Vahisalu et al., 2008). In Ara-

bidopsis, leaf expression of SLAC1 is restricted mainly to guard cells

(Negi et al., 2008; Vahisalu et al., 2008) and is upregulated 1 to 1.6

log2 fold change by drought (Wang et al., 2016). In contrast, we

observed a strong downregulation (−2.8 to −3.6 log2 fold change) of

SLAC1 in sweet potato leaves in response to PEG (Supporting Infor-

mation Figure S2; Supporting Information Table S3).

3.5 | Varietal differences in differentially expressed
genes under dehydration stress

Differential gene expression analysis for each individual variety‐time

point combination suggested that there are ~2,000 PEG‐responsive
genes unique to each variety (Figure 2a). We hypothesize that

expression differences in some of these genes contribute to the dif-

ferences in days to permanent wilting point, and drought‐induced
reductions in chlorophyll content and storage roots observed

between the two varieties (Supporting Information Figure S1). To

statistically identify genes that are regulated differentially between

Beauregard and Tanzania in response to PEG, genes were tested for

significant interaction effects between PEG treatment and variety,

either as two‐way interactions or as three‐way interactions with

time. The significant genes were classified into co‐regulated clusters

using a K‐means approach in order to uncover expression patterns.

In this way, 3,824 genes with significant interaction effects were

identified and grouped into 16 clusters ranging from 60 to 500

genes in size (Supporting Information Figure S3; Supporting Informa-

tion Table S4). Clusters 4, 5 and 6, encompassing 1,322 genes, have

relatively mild differences between Beauregard and Tanzania (Fig-

ure 5a). Conversely, the other clusters, which compose the remaining
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2,502 genes used for clustering, had marked differences in expres-

sion pattern between the two varieties consistent with distinct

genetic responses to dehydration stress.

Additionally, these expression differences between the two vari-

eties were dramatically different at the two time‐points in clusters 11,

13, and 15, emphasizing again that dynamic regulatory changes occur

between the two time‐points. Cluster 11 was not significantly

enriched for any biological process GO term, but contained an ortho-

log of OST2, which encodes an H+‐ATPase proton pump that is

involved in ABA‐mediated stomatal closure in response to drought

(Merlot et al., 2007; Figure 5b; Supporting Information Table S3).

Three OST2 orthologs were significant for interaction between treat-

ment and variety effects (the other two were in clusters 3 and 6) and

except for 24 HAS for itf03g23220, higher expression was observed

for Beauregard for all data points suggesting that reduced OST2 activ-

ity in Tanzania may contribute to its higher days to permanent wilting

(Figure 1a, Supporting Information Figure S4). In contrast to cluster

11, clusters 13, and 15, which had increased expression in Tanzania at

48 HAS compared to 24 HAS but had either similar or weakened

expression at 48 HAS compared to 24 HAS in Beauregard, were

weakly significant for the biological process GO term “hydrogen per-

oxide‐mediated programmed cell death” (Figure 5b; Supporting Infor-

mation Dataset S3). This suggests that drought‐induced hydrogen

peroxide (Noctor, Veljovic‐Jovanovic, Driscoll, Novitskaya, & Foyer,

2002) causes more cell death in Tanzania. However, the overall effect

of hydrogen peroxide in Tanzania could potentially not be detrimental

because hydrogen peroxide is an important signal molecule for proper

ABA‐mediated stomatal closure (Pei et al., 2000).

Clusters 1, 2, 4, and 6 were enriched for photosynthesis‐related
GO terms and contained genes that were, in general, expressed

higher in Beauregard or at comparable levels in both varieties (Fig-

ure 5). Cellular compartment GO term analysis supported an enrich-

ment for genes involved in photosynthesis in these clusters, with

significant GO terms for chloroplast thylakoid membrane, stroma and

envelope (Supporting Information Figure S5a). Clusters 2, 4, and 6

were also enriched for the pentose‐phosphate shunt biological pro-

cess GO term (Figure 5b). One of the products of the pentose‐phos-
phate shunt is NADPH (Kruger & von Schaewen, 2003), which is

required for the anti‐oxidative function of glutathione reductase that

may help quench reactive oxygen species (ROS) produced during

drought that could damage chloroplast membranes (Das & Roy-

choudhury, 2014). Together, the higher expression of photosynthesis

and pentose‐phosphate shunt genes in clusters 1, 2, 4, and 6 in

Beauregard may contribute to its smaller reduction in chlorophyll

content compared to Tanzania plants in response to drought (Sup-

porting Information Figure S1b).

Cluster 8 genes were on average regulated at ~3 log2 fold higher

in Tanzania than in Beauregard at both 24 and 48 HAS (Figure 5a).

Interestingly, cluster 8 was most significant for enrichment of the

GO term, “anthocyanin‐containing compound biosynthesis” (Fig-

ure 5b). Anthocyanin production is triggered by various biotic and

abiotic stresses, including drought stress (Kovinich et al., 2014).

While the function of stress‐induced anthocyanin is still debated,

overexpression of anthocyanin biosynthesis improves drought resis-

tance and the leading hypothesis is that it is involved in removing

ROS (Gould, McKelvie, & Markham, 2002; Kovinich, Kayanja, Cha-

noca, Otegui, & Grotewold, 2015; Nakabayashi et al., 2014). Because

ROS overaccumulation can damage not only cellular membranes but

also nucleic acids and proteins, the increased expression of antho-

cyanin‐containing biosynthesis genes in Tanzania may contribute to

its extended days to permanent wilting point compared to Beaure-

gard (Supporting Information Figure S1a) by helping to limit levels of

damaging ROS during drought stress.

4 | CONCLUSIONS

We present here an expression profiling resource for drought stress

experiments in sweet potato and have demonstrated its utility for

generating hypotheses for functional genomics. Overall expression

patterns were conserved between Beauregard and Tanzania, and

consistent with drought responses reported in the literature, with a

general upregulation of ABA signaling components and downregula-

tion of tissue growth processes. These observations corroborate the

quality of our data and give weight to the other aspects of our anal-

ysis, including several interesting findings. We have identified a

group of LRR kinases that are down‐regulated at 24 HAS but not at

48 HAS suggesting their reduced activities at 24 HAS have impor-

tant roles in dehydration response. Interestingly, we observed down‐
regulation of single‐copy LHCSB6 and SLAC1 orthologs in both vari-

eties at both time‐points. These two genes encode effector proteins,

a chlorophyll‐binding component of PS II and a guard cell anion

efflux protein, respectively, that have been shown to be highly

important for stomatal closure during drought stress in Arabidopsis

and we present these as strong candidates for overexpression exper-

iments in sweet potato. Co‐regulated clusters of genes involved in

photosynthesis and the pentose‐phosphate pathway that is

expressed higher in Beauregard may contribute to its chlorophyll

content being more resilient to drought than Tanzania. On the other

hand, a separate co‐regulated gene cluster involved in the produc-

tion of anthocyanin‐containing molecules may help increase the

number of days to permanent wilting in Tanzania.
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